函數(shù)知識(shí)點(diǎn)總結(jié)

    時(shí)間:2024-08-21 15:53:47 知識(shí)點(diǎn)總結(jié) 我要投稿

    函數(shù)知識(shí)點(diǎn)總結(jié)(精)

      總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書(shū)面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),不如我們來(lái)制定一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編整理的函數(shù)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

    函數(shù)知識(shí)點(diǎn)總結(jié)(精)

    函數(shù)知識(shí)點(diǎn)總結(jié)1

      一、二次函數(shù)概念:

      a0)b,c是常數(shù)

      1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

      2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

      ⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

      ⑵a,二、二次函數(shù)的基本形式

      1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開(kāi)口越小。

      a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

      2.yax2c的性質(zhì):上加下減。

      a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減小;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

      3.yaxh的性質(zhì):左加右減。

      2a的符號(hào)a0開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

      4.yaxhk的性質(zhì):

      a的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減小;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

      三、二次函數(shù)圖象的平移

      1.平移步驟:

      方法一:

      ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

      ⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

      向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

      畫(huà)草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

      六、二次函數(shù)yax2bxc的性質(zhì)

      b4acb2b1.當(dāng)a0時(shí),拋物線開(kāi)口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

      2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

      4ab4acb2bb2.當(dāng)a0時(shí),拋物線開(kāi)口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減小;當(dāng)x時(shí),y有最大值

      2a2a4a

      七、二次函數(shù)解析式的表示方法

      1.一般式:yax2bxc(a,b,c為常數(shù),a0);

      2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

      3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

      注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫(xiě)成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

      八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

      1.二次項(xiàng)系數(shù)a

      二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

      ⑴當(dāng)a0時(shí),拋物線開(kāi)口向上,a的值越大,開(kāi)口越小,反之a(chǎn)的值越小,開(kāi)口越大;

      ⑵當(dāng)a0時(shí),拋物線開(kāi)口向下,a的值越小,開(kāi)口越小,反之a(chǎn)的值越大,開(kāi)口越大.

      總結(jié)起來(lái),a決定了拋物線開(kāi)口的大小和方向,a的正負(fù)決定開(kāi)口方向,a的大小決定開(kāi)口的大小.

      2.一次項(xiàng)系數(shù)b

      在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.

      ⑴在a0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的`右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a

      總結(jié)起來(lái),在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.

      ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說(shuō)就是“左同2a右異”總結(jié):

      3.常數(shù)項(xiàng)c

      ⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

      ⑵當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

      ⑶當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來(lái),c決定了拋物線與y軸交點(diǎn)的位置.

      b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

      根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡(jiǎn)便.一般來(lái)說(shuō),有如下幾種情況:

      1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

      2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;

      3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

      4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

      九、二次函數(shù)圖象的對(duì)稱

      二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

      1.關(guān)于x軸對(duì)稱

      yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

      yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

      2.關(guān)于y軸對(duì)稱

      yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

      22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

      3.關(guān)于原點(diǎn)對(duì)稱

      yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;

      4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

      2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

      2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱

      5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無(wú)論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開(kāi)口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開(kāi)口方向,然后再寫(xiě)出其對(duì)稱拋物線的表達(dá)式.

      十、二次函數(shù)與一元二次方程:

      1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

      一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

      ①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

      b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

      a2

      ②當(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

      ③當(dāng)0時(shí),圖象與x軸沒(méi)有交點(diǎn).

      1"當(dāng)a0時(shí),圖象落在x軸的上方,無(wú)論x為任何實(shí)數(shù),都有y0;

      2"當(dāng)a0時(shí),圖象落在x軸的下方,無(wú)論x為任何實(shí)數(shù),都有y0.

      2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

      3.二次函數(shù)常用解題方法總結(jié):

      ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

      ⑵求二次函數(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

      ⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

      ⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).

      ⑸與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

      0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無(wú)實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無(wú)交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

      y=3x2y=3(x-2)2y=x22

      y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

      剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)

      最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

    函數(shù)知識(shí)點(diǎn)總結(jié)2

      一、函數(shù)對(duì)稱性:

      1.2.3.4.5.6.7.8.

      f(a+x)=f(a-x)==>f(x)關(guān)于x=a對(duì)稱

      f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對(duì)稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對(duì)稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對(duì)稱

      f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對(duì)稱y=f(x)與y=f(-x)關(guān)于x=0對(duì)稱y=f(x)與y=-f(x)關(guān)于y=0對(duì)稱y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對(duì)稱

      例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對(duì)稱。

      【解析】求兩個(gè)不同函數(shù)的對(duì)稱軸,用設(shè)點(diǎn)和對(duì)稱原理作解。

      證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

      ∴b2t=a,==>t=(b-a)/2,即證得對(duì)稱軸為x=(b-a)/2.

      例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對(duì)稱。

      證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

      ∴2t-b=a,==>t=(a+b)/2,即證得對(duì)稱軸為x=(a+b)/2.

      二、函數(shù)的周期性

      令a,b均不為零,若:

      1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

      2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

      3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

      4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

      5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

      這里只對(duì)第2~5點(diǎn)進(jìn)行解析。

      第2點(diǎn)解析:

      令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

      第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

      ①f(x)=-f(x+a)……

      ②∴由①和②解得f(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

      第4點(diǎn)解析:

      f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

      又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

      ∴函數(shù)最小正周期T=|2a|

      第5點(diǎn)解析:

      ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

      ∴1f(x)=2/[f(x)+1]移項(xiàng)得f(x)=12/[f(x+a)+1]

      那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

      由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

      ∴函數(shù)最小正周期T=|4a|

      擴(kuò)展閱讀:函數(shù)對(duì)稱性、周期性和奇偶性的規(guī)律總結(jié)

      函數(shù)對(duì)稱性、周期性和奇偶性規(guī)律總結(jié)

      (一)同一函數(shù)的函數(shù)的奇偶性與對(duì)稱性:(奇偶性是一種特殊的對(duì)稱性)

      1、奇偶性:

      (1)奇函數(shù)關(guān)于(0,0)對(duì)稱,奇函數(shù)有關(guān)系式f(x)f(x)0

      (2)偶函數(shù)關(guān)于y(即x=0)軸對(duì)稱,偶函數(shù)有關(guān)系式f(x)f(x)

      2、奇偶性的拓展:同一函數(shù)的對(duì)稱性

      (1)函數(shù)的軸對(duì)稱:

      函數(shù)yf(x)關(guān)于xa對(duì)稱f(ax)f(ax)

      f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)

      若寫(xiě)成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱

      (ax)(bx)ab對(duì)22證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),

      即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對(duì)稱。得證。

      說(shuō)明:關(guān)于xa對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

      ∵(ax1,y1)與(ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

      f(ax)f(ax)

      ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

      f(x)f(2ax)

      ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

      f(x)f(2ax)

      (2)函數(shù)的點(diǎn)對(duì)稱:

      函數(shù)yf(x)關(guān)于點(diǎn)(a,b)對(duì)稱f(ax)f(ax)2b

      上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b

      若寫(xiě)成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(diǎn)(abc,)對(duì)稱2證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對(duì)稱。得證。

      說(shuō)明:關(guān)于點(diǎn)(a,b)對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

      (3)函數(shù)yf(x)關(guān)于點(diǎn)yb對(duì)稱:假設(shè)函數(shù)關(guān)于yb對(duì)稱,即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對(duì)應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對(duì)稱。但在曲線c(x,y)=0,則有可能會(huì)出現(xiàn)關(guān)于yb對(duì)稱,比如圓c(x,y)x2y240它會(huì)關(guān)于y=0對(duì)稱。

      (4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:

      性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

      性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

      性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對(duì)稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(diǎn)(a,0)中心對(duì)稱。

      總結(jié):x的`系數(shù)一個(gè)為1,一個(gè)為-1,相加除以2,可得對(duì)稱軸方程

      總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數(shù)是為1,另一個(gè)為-1,存在對(duì)稱中心。

      總結(jié):x的系數(shù)同為為1,具有周期性。

      (二)兩個(gè)函數(shù)的圖象對(duì)稱性

      1、yf(x)與yf(x)關(guān)于X軸對(duì)稱。

      證明:設(shè)yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)

      ∵(x1,y1)與(x1,y1)關(guān)于X軸對(duì)稱,∴y1f(x1)與yf(x)關(guān)于X軸對(duì)稱.注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對(duì)稱。

    函數(shù)知識(shí)點(diǎn)總結(jié)3

      特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

      此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

      當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

      當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

      當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

      當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

      當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

      因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便。

      2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

      3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

      4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

      (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

      (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

      當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

      5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

      頂點(diǎn)的'橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

      6.用待定系數(shù)法求二次函數(shù)的解析式

      (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

      (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

      (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

    函數(shù)知識(shí)點(diǎn)總結(jié)4

      一次函數(shù)的定義

      一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

      1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

      2、當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù)。

      3、當(dāng)k=0,b≠0時(shí),它不是一次函數(shù)。

      4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

      一次函數(shù)的圖像及性質(zhì)

      1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

      2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。

      3、正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

      4、k,b與函數(shù)圖像所在象限的關(guān)系:

      當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

      當(dāng)k>0,b>0時(shí),直線通過(guò)一、二、三象限;

      當(dāng)k>0,b<0時(shí),直線通過(guò)一、三、四象限;

      當(dāng)k<0,b>0時(shí),直線通過(guò)一、二、四象限;

      當(dāng)k<0,b<0時(shí),直線通過(guò)二、三、四象限;

      當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

      一次函數(shù)的圖象與性質(zhì)的口訣

      一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;

      正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;

      兩個(gè)系數(shù)k與b,作用之大莫小看,

      k是斜率定夾角,b與y軸來(lái)相見(jiàn),

      k為正來(lái)右上斜,x增減y增減;

      k為負(fù)來(lái)左下展,變化規(guī)律正相反;

      k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

      拓展閱讀:一次函數(shù)的'解題方法

      理解一次函數(shù)和其它知識(shí)的聯(lián)系

      一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

      掌握一次函數(shù)的解析式的特征

      一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒(méi)有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

      應(yīng)用一次函數(shù)解決實(shí)際問(wèn)題

      1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

      2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

      3、在實(shí)際問(wèn)題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

      4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

      數(shù)形結(jié)合

      方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

      如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問(wèn)題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

    函數(shù)知識(shí)點(diǎn)總結(jié)5

      1.函數(shù)的定義

      函數(shù)是高考數(shù)學(xué)中的重點(diǎn)內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個(gè)知識(shí)點(diǎn),然后運(yùn)用函數(shù)的各種性質(zhì)來(lái)解決具體的問(wèn)題。

      設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A-B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),xA

      2.函數(shù)的定義域

      函數(shù)的定義域分為自然定義域和實(shí)際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實(shí)際問(wèn)題確定的,這時(shí)應(yīng)根據(jù)自變量的實(shí)際意義來(lái)確定,函數(shù)的'值域是由全體函數(shù)值組成的集合。

      3.求解析式

      求函數(shù)的解析式一般有三種種情況:

      (1)根據(jù)實(shí)際問(wèn)題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)找出函數(shù)關(guān)系式。

      (2)有時(shí)體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。

      (3)換元法求解析式,f[h(x)]=g(x)求f(x)的問(wèn)題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來(lái)解。掌握求函數(shù)解析式的前提是,需要對(duì)各種函數(shù)的性質(zhì)了解且熟悉。

      目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對(duì)較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。

    函數(shù)知識(shí)點(diǎn)總結(jié)6

      總體上必須清楚的:

      1)程序結(jié)構(gòu)是三種:順序結(jié)構(gòu)、選擇結(jié)構(gòu)(分支結(jié)構(gòu))、循環(huán)結(jié)構(gòu)。

      2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個(gè)main函數(shù)。

      3)計(jì)算機(jī)的數(shù)據(jù)在電腦中保存是以二進(jìn)制的形式.數(shù)據(jù)存放的位置就是他的地址.

      4)bit是位是指為0或者1。 byte是指字節(jié),一個(gè)字節(jié)=八個(gè)位.

      概念常考到的:

      1、編譯預(yù)處理不是C語(yǔ)言的一部分,不占運(yùn)行時(shí)間,不要加分號(hào)。C語(yǔ)言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。

      2、define PI 3.1415926;這個(gè)寫(xiě)法是錯(cuò)誤的,一定不能出現(xiàn)分號(hào)。 -

      3、每個(gè)C語(yǔ)言程序中main函數(shù)是有且只有一個(gè)。

      4、在函數(shù)中不可以再定義函數(shù)。

      5、算法:可以沒(méi)有輸入,但是一定要有輸出。

      6、break可用于循環(huán)結(jié)構(gòu)和switch語(yǔ)句。

      7、逗號(hào)運(yùn)算符的級(jí)別最低,賦值的級(jí)別倒數(shù)第二。

      第一章C語(yǔ)言的基礎(chǔ)知識(shí)

      第一節(jié)、對(duì)C語(yǔ)言的基礎(chǔ)認(rèn)識(shí)

      1、C語(yǔ)言編寫(xiě)的程序稱為源程序,又稱為編譯單位。

      2、C語(yǔ)言書(shū)寫(xiě)格式是自由的,每行可以寫(xiě)多個(gè)語(yǔ)句,可以寫(xiě)多行。

      3、一個(gè)C語(yǔ)言程序有且只有一個(gè)main函數(shù),是程序運(yùn)行的起點(diǎn)。

      第二節(jié)、熟悉vc++

      1、VC是軟件,用來(lái)運(yùn)行寫(xiě)的C語(yǔ)言程序。

      2、每個(gè)C語(yǔ)言程序?qū)懲旰螅际窍染幾g,后鏈接,最后運(yùn)行。(.c—.obj—.exe)這個(gè)過(guò)程中注意.c和.obj文件時(shí)無(wú)法運(yùn)行的,只有.exe文件才可以運(yùn)行。(常考!)

      第三節(jié)、標(biāo)識(shí)符

      1、標(biāo)識(shí)符(必考內(nèi)容):

      合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯(cuò)了。

      并且第一個(gè)必須為字母或則是下劃線。第一個(gè)為數(shù)字就錯(cuò)了

      2、標(biāo)識(shí)符分為關(guān)鍵字、預(yù)定義標(biāo)識(shí)符、用戶標(biāo)識(shí)符。

      關(guān)鍵字:不可以作為用戶標(biāo)識(shí)符號(hào)。main define scanf printf都不是關(guān)鍵字。迷惑你的地方If是可以做為用戶標(biāo)識(shí)符。因?yàn)镮f中的`第一個(gè)字母大寫(xiě)了,所以不是關(guān)鍵字。

      預(yù)定義標(biāo)識(shí)符:背誦define scanf printf include。記住預(yù)定義標(biāo)識(shí)符可以做為用戶標(biāo)識(shí)符。

      用戶標(biāo)識(shí)符:基本上每年都考,詳細(xì)請(qǐng)見(jiàn)書(shū)上習(xí)題。

      第四節(jié):進(jìn)制的轉(zhuǎn)換

      十進(jìn)制轉(zhuǎn)換成二進(jìn)制、八進(jìn)制、十六進(jìn)制。

      二進(jìn)制、八進(jìn)制、十六進(jìn)制轉(zhuǎn)換成十進(jìn)制。

      第五節(jié):整數(shù)與實(shí)數(shù)

      1)C語(yǔ)言只有八、十、十六進(jìn)制,沒(méi)有二進(jìn)制。但是運(yùn)行時(shí)候,所有的進(jìn)制都要轉(zhuǎn)換成二進(jìn)制來(lái)進(jìn)行處理。(考過(guò)兩次)

      a、C語(yǔ)言中的八進(jìn)制規(guī)定要以0開(kāi)頭。018的數(shù)值是非法的,八進(jìn)制是沒(méi)有8的,逢8進(jìn)1。

      b、C語(yǔ)言中的十六進(jìn)制規(guī)定要以0x開(kāi)頭。

      2)小數(shù)的合法寫(xiě)法:C語(yǔ)言小數(shù)點(diǎn)兩邊有一個(gè)是零的話,可以不用寫(xiě)。

      1.0在C語(yǔ)言中可寫(xiě)成1.

      0.1在C語(yǔ)言中可以寫(xiě)成.1。

      3)實(shí)型數(shù)據(jù)的合法形式:

      a、2.333e-1就是合法的,且數(shù)據(jù)是2.333×10-1。

      b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請(qǐng)結(jié)合書(shū)上的例子。

      4)整型一般是4個(gè)字節(jié),字符型是1個(gè)字節(jié),雙精度一般是8個(gè)字節(jié):

      long int x;表示x是長(zhǎng)整型。

      unsigned int x;表示x是無(wú)符號(hào)整型。

      第六、七節(jié):算術(shù)表達(dá)式和賦值表達(dá)式

      核心:表達(dá)式一定有數(shù)值!

      1、算術(shù)表達(dá)式:+,-,*,/,%

      考試一定要注意:“/”兩邊都是整型的話,結(jié)果就是一個(gè)整型。 3/2的結(jié)果就是1.

      “/”如果有一邊是小數(shù),那么結(jié)果就是小數(shù)。 3/2.0的結(jié)果就是0.5

      “%”符號(hào)請(qǐng)一定要注意是余數(shù),考試最容易算成了除號(hào)。)%符號(hào)兩邊要求是整數(shù)。不是整數(shù)就錯(cuò)了。[注意!!!]

      2、賦值表達(dá)式:表達(dá)式數(shù)值是最左邊的數(shù)值,a=b=5;該表達(dá)式為5,常量不可以賦值。

      1、int x=y=10:錯(cuò)啦,定義時(shí),不可以連續(xù)賦值。

      2、int x,y;

      x=y=10;對(duì)滴,定義完成后,可以連續(xù)賦值。

      3、賦值的左邊只能是一個(gè)變量。

      4、int x=7.7;對(duì)滴,x就是7

      5、float y=7;對(duì)滴,x就是7.0

      3、復(fù)合的賦值表達(dá)式:

      int a=2;

      a*=2+3;運(yùn)行完成后,a的值是12。

      一定要注意,首先要在2+3的上面打上括號(hào)。變成(2+3)再運(yùn)算。

      4、自加表達(dá)式:

      自加、自減表達(dá)式:假設(shè)a=5,++a(是為6),a++(為5);

      運(yùn)行的機(jī)理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個(gè)++a表達(dá)式的數(shù)值為6,而a++是先用該表達(dá)式的數(shù)值為5,然后再把a(bǔ)的數(shù)值加上1為6,

      再放到變量a中。進(jìn)行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。

      考試口訣:++在前先加后用,++在后先用后加。

      5、逗號(hào)表達(dá)式:

      優(yōu)先級(jí)別最低。表達(dá)式的數(shù)值逗號(hào)最右邊的那個(gè)表達(dá)式的數(shù)值。

      (2,3,4)的表達(dá)式的數(shù)值就是4。

      z=(2,3,4)(整個(gè)是賦值表達(dá)式)這個(gè)時(shí)候z的值為4。(有點(diǎn)難度哦!)

      z= 2,3,4(整個(gè)是逗號(hào)表達(dá)式)這個(gè)時(shí)候z的值為2。

      補(bǔ)充:

      1、空語(yǔ)句不可以隨意執(zhí)行,會(huì)導(dǎo)致邏輯錯(cuò)誤。

      2、注釋是最近幾年考試的重點(diǎn),注釋不是C語(yǔ)言,不占運(yùn)行時(shí)間,沒(méi)有分號(hào)。不可以嵌套!

      3、強(qiáng)制類型轉(zhuǎn)換:

      一定是(int)a不是int(a),注意類型上一定有括號(hào)的。

      注意(int)(a+b)和(int)a+b的區(qū)別。前是把a(bǔ)+b轉(zhuǎn)型,后是把a(bǔ)轉(zhuǎn)型再加b。

      4、三種取整丟小數(shù)的情況:

      1、int a =1.6;

      2、(int)a;

      3、1/2;3/2;

      第八節(jié)、字符

      1)字符數(shù)據(jù)的合法形式::

      ‘1’是字符占一個(gè)字節(jié),”1”是字符串占兩個(gè)字節(jié)(含有一個(gè)結(jié)束符號(hào))。

      ‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。

      一般考試表示單個(gè)字符錯(cuò)誤的形式:’65’ “1”

      字符是可以進(jìn)行算術(shù)運(yùn)算的,記住:‘0’-0=48

      大寫(xiě)字母和小寫(xiě)字母轉(zhuǎn)換的方法:‘A’+32=’a’相互之間一般是相差32。

      2)轉(zhuǎn)義字符:

      轉(zhuǎn)義字符分為一般轉(zhuǎn)義字符、八進(jìn)制轉(zhuǎn)義字符、十六進(jìn)制轉(zhuǎn)義字符。

      一般轉(zhuǎn)義字符:背誦/0、、 ’、 ”、 。

      八進(jìn)制轉(zhuǎn)義字符:‘141’是合法的,前導(dǎo)的0是不能寫(xiě)的。

      十六進(jìn)制轉(zhuǎn)義字符:’x6d’才是合法的,前導(dǎo)的0不能寫(xiě),并且x是小寫(xiě)。

      3、字符型和整數(shù)是近親:兩個(gè)具有很大的相似之處

      char a = 65 ;

      printf(“%c”, a);得到的輸出結(jié)果:a

      printf(“%d”, a);得到的輸出結(jié)果:65

      第九節(jié)、位運(yùn)算

      1)位運(yùn)算的考查:會(huì)有一到二題考試題目。

      總的處理方法:幾乎所有的位運(yùn)算的題目都要按這個(gè)流程來(lái)處理(先把十進(jìn)制變成二進(jìn)制再變成十進(jìn)制)。

      例1:char a = 6, b;

      b = a<<2;這種題目的計(jì)算是先要把a(bǔ)的十進(jìn)制6化成二進(jìn)制,再做位運(yùn)算。

      例2:一定要記住,異或的位運(yùn)算符號(hào)” ^ ”。0異或1得到1。

      0異或0得到0。兩個(gè)女的生不出來(lái)。

      考試記憶方法:一男(1)一女(0)才可以生個(gè)小孩(1)。

      例3:在沒(méi)有舍去數(shù)據(jù)的時(shí)候,<<左移一位表示乘以2;>>右移一位表示除以2。

    函數(shù)知識(shí)點(diǎn)總結(jié)7

      一次函數(shù)的圖象與性質(zhì)的口訣:

      一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;

      正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;

      兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;

      k為負(fù)來(lái)左下展,變化規(guī)律正相反;

      k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

      拓展閱讀:一次函數(shù)的解題方法

      理解一次函數(shù)和其它知識(shí)的聯(lián)系

      一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

      掌握一次函數(shù)的解析式的特征

      一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒(méi)有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

      應(yīng)用一次函數(shù)解決實(shí)際問(wèn)題

      1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

      2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

      3、在實(shí)際問(wèn)題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

      4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

      數(shù)形結(jié)合

      方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

      如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問(wèn)題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

      數(shù)學(xué)解題方法分別有哪些

      1、配方法

      所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

      2、因式分解法

      因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的'乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

      3、換元法

      替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

      4、判別式法與韋達(dá)定理

      一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

      韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。

      5、待定系數(shù)法

      在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

      6、構(gòu)造法

      在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。

      數(shù)學(xué)經(jīng)常遇到的問(wèn)題解答

      1、要提高數(shù)學(xué)成績(jī)首先要做什么?

      這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺(jué)得基礎(chǔ)知識(shí)過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺(jué)良好”其實(shí)是一種錯(cuò)覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。

      2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

      對(duì)于基礎(chǔ)差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

      3、是否要采用題海戰(zhàn)術(shù)?

      方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。

      4、做題總是粗心怎么辦?

      很多學(xué)生成績(jī)不好,會(huì)說(shuō)自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒(méi)有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒(méi)有“粗心”只有“不用心”。

      為什么要學(xué)習(xí)數(shù)學(xué)

      作為一門(mén)普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無(wú)味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥?lái)的職業(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

      首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過(guò)程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過(guò)長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭绕涫窃诮鉀Q復(fù)雜問(wèn)題時(shí)更能得心應(yīng)手。

      其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒(méi)有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過(guò)程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

      除此之外,數(shù)學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語(yǔ)言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語(yǔ)言來(lái)描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

      最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。

    函數(shù)知識(shí)點(diǎn)總結(jié)8

      I.定義與定義表達(dá)式

      一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱y為_(kāi)的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(_-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_?,0)和B(_?,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=_^2的.圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質(zhì)

      1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線_=-b/2a。

      對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線_=0)

      2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在_軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。

      4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

      拋物線與y軸交于(0,c)

      6.拋物線與_軸交點(diǎn)個(gè)數(shù)

      Δ=b^2-4ac>0時(shí),拋物線與_軸有2個(gè)交點(diǎn)。

      Δ=b^2-4ac=0時(shí),拋物線與_軸有1個(gè)交點(diǎn)。

      Δ=b^2-4ac<0時(shí),拋物線與_軸沒(méi)有交點(diǎn)。

      _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

      此時(shí),函數(shù)圖像與_軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與_軸交點(diǎn)的橫坐標(biāo)即為方程的根。

    函數(shù)知識(shí)點(diǎn)總結(jié)9

      1.常量和變量

      在某變化過(guò)程中可以取不同數(shù)值的量,叫做變量.在某變化過(guò)程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

      2.函數(shù)

      設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

      3.自變量的取值范圍

      (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

      (3)偶次方根:被開(kāi)方數(shù)為非負(fù)數(shù).

      (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

      4.函數(shù)值

      對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

      5.函數(shù)的表示法

      (1)解析法;(2)列表法;(3)圖象法.

      6.函數(shù)的圖象

      把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫(huà)函數(shù)圖象的步驟:

      (1)寫(xiě)出函數(shù)解析式及自變量的取值范圍;

      (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

      (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

      (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).

      7.一次函數(shù)

      (1)一次函數(shù)

      如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

      特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

      (2)一次函數(shù)的圖象

      一次函數(shù)y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過(guò)原點(diǎn)的直線.需要說(shuō)明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

      (3)一次函數(shù)的性質(zhì)

      當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

      (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

      ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

      ②二元一次方程組對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

      ③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

      8.反比例函數(shù)(1)反比例函數(shù)

      (1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

      (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

      (3)反比例函數(shù)的性質(zhì)

      ①當(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

      ②當(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

      ③反比例函數(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

      (4)k的兩種求法

      ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

      若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

      (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題

      若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無(wú)交點(diǎn);

      當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的'圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

      1.二次函數(shù)

      如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

      幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

      2.二次函數(shù)的圖象

      二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過(guò)平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

      3.二次函數(shù)的性質(zhì)

      二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

      (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

      (2)若a>0,拋物線y=ax2+bx+c的開(kāi)口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減小;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開(kāi)口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減小;當(dāng)x=時(shí),y有最大值;

      (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

      (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

      <0時(shí),拋物線y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

      拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來(lái)決定.

    函數(shù)知識(shí)點(diǎn)總結(jié)10

      倍角公式

      二倍角公式

      正弦形式:sin2α=2sinαcosα

      正切形式:tan2α=2tanα/(1-tan^2(α))

      余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a=tana·tan(π/3+a)·tan(π/3-a)

      四倍角公式

      sin4A=-4*(cosA*sinA*(2*sinA^2-1))

      cos4A=1+(-8*cosA^2+8*cosA^4)

      tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

      半角公式

      正弦

      sin(A/2)=√((1-cosA)/2)

      sin(A/2)=-√((1-cosA)/2)

      余弦

      cos(A/2)=√((1+cosA)/2)

      cos(A/2)=-√((1+cosA)/2)

      正切

      tan(A/2)=√((1-cosA)/((1+cosA))

      tan(A/2)=-√((1-cosA)/((1+cosA))

      積化和差

      sina*cosb=[sin(a+b)+sin(a-b)]/2

      cosa*sinb=[sin(a+b)-sin(a-b)]/2

      cosa*cosb=[cos(a+b)+cos(a-b)]/2

      sina*sinb=[cos(a-b)-cos(a+b)]/2

      和差化積

      sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

      sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

      cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

      cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

      誘導(dǎo)公式

      任意角α與-α的三角函數(shù)值之間的關(guān)系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2kπ+α)=sinα(k∈Z)

      cos(2kπ+α)=cosα(k∈Z)

      tan(2kπ+α)=tanα(k∈Z)

      cot(2kπ+α)=cotα(k∈Z)

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      拓展閱讀:三角函數(shù)常用知識(shí)點(diǎn)

      1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

      2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

      3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的'余角的正弦值。

      4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

      5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時(shí),sinα隨α的增大而增大,cosα隨α的增大而減小。

      6、正切、余切的增減性:當(dāng)0°<α<90°時(shí),tanα隨α的增大而增大,cotα隨α的增大而減小。

    函數(shù)知識(shí)點(diǎn)總結(jié)11

      一:函數(shù)及其表示

      知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

      1. 函數(shù)與映射的區(qū)別:

      2. 求函數(shù)定義域

      常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

      ①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

      ②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

      ③當(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。

      ④當(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

      ⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的.,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

      ⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

      ⑦對(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

      3. 求函數(shù)值域

      (1)、觀察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

      (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫(xiě)成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;

      (3)、判別式法:

      (4)、數(shù)形結(jié)合法;通過(guò)觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

      (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

      (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;

      (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

      (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

      (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

    函數(shù)知識(shí)點(diǎn)總結(jié)12

      一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

      主要考察內(nèi)容:

      ①會(huì)畫(huà)一次函數(shù)的圖像,并掌握其性質(zhì)。

      ②會(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

      ③能用一次函數(shù)解決實(shí)際問(wèn)題。

      ④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

      突破方法:

      ①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

      ②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問(wèn)題。

      ③掌握用待定系數(shù)法球一次函數(shù)解析式。

      ④做一些綜合題的訓(xùn)練,提高分析問(wèn)題的能力。

      函數(shù)性質(zhì):

      1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

      2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

      3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

      4.在兩個(gè)一次函數(shù)表達(dá)式中:

      當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的`同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

      1、作法與圖形:通過(guò)如下3個(gè)步驟:

      (1)列表.

      (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。

      正比例函數(shù)y=kx(k≠0)的圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

      2、性質(zhì):

      (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

      (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。

      3、函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。

      4、k,b與函數(shù)圖像所在象限:

      y=kx時(shí)(即b等于0,y與x成正比例):

      當(dāng)k>0時(shí),直線必通過(guò)第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、二、三象限;當(dāng)k>0,b

    函數(shù)知識(shí)點(diǎn)總結(jié)13

      當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,

      當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

      當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

      2.拋物線y=a_^2+b_+c(a≠0)的.圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

      4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

      (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

      (2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

      (a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

      當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

      當(dāng)△<0.圖象與_軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

      5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

      頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

      6.用待定系數(shù)法求二次函數(shù)的解析式

      (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

      y=a_^2+b_+c(a≠0).

      (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

      (3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

      7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

    函數(shù)知識(shí)點(diǎn)總結(jié)14

      1、定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      2、二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)p(h,k)]

      交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

      3、二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

      4、拋物線的性質(zhì)

      1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x = -b/2a。

      對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)p。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

      2.拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為:p ( -b/2a,(4ac-b^2)/4a )當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)δ= b^2-4ac=0時(shí),p在x軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a

      4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab

      5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點(diǎn)個(gè)數(shù)

      δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

      δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

      δ= b^2-4ac

      5、二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

      此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸:

      當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

      當(dāng)h

      當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

      當(dāng)h>0,k

      當(dāng)h0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

      當(dāng)h

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

      2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a

      3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a

      4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

      (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

      (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

      (a≠0)的.兩根.這兩點(diǎn)間的距離ab=|x-x|

      當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

      當(dāng)△0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a

      5.拋物線y=ax^2+bx+c的最值:如果a>0(a

      頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值

      6.用待定系數(shù)法求二次函數(shù)的解析式

      (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

      y=ax^2+bx+c(a≠0).

      (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

      (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0).

      7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

    函數(shù)知識(shí)點(diǎn)總結(jié)15

      一、函數(shù)的概念與表示

      1、映射

      (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對(duì)于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),則這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

      注意點(diǎn):(1)對(duì)映射定義的理解。(2)判斷一個(gè)對(duì)應(yīng)是映射的方法。一對(duì)多不是映射,多對(duì)一是映射

      2、函數(shù)

      構(gòu)成函數(shù)概念的三要素

      ①定義域②對(duì)應(yīng)法則③值域

      兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

      二、函數(shù)的解析式與定義域

      1、求函數(shù)定義域的主要依據(jù):

      (1)分式的分母不為零;

      (2)偶次方根的被開(kāi)方數(shù)不小于零,零取零次方?jīng)]有意義;

      (3)對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

      (4)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      三、函數(shù)的值域

      1求函數(shù)值域的方法

      ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復(fù)合函數(shù);

      ②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

      ③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的`分式;

      ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);

      ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

      ⑥圖象法:二次函數(shù)必畫(huà)草圖求其值域;

      ⑦利用對(duì)號(hào)函數(shù)

      ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

      四.函數(shù)的奇偶性

      1.定義:設(shè)y=f(x),x∈A,如果對(duì)于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

      如果對(duì)于任意∈A,都有,則稱y=f(x)為奇

      函數(shù)。

      2.性質(zhì):

      ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對(duì)稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,

      ②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(0)=0

      ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對(duì)稱]

      3.奇偶性的判斷

      ①看定義域是否關(guān)于原點(diǎn)對(duì)稱②看f(x)與f(-x)的關(guān)系

      五、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義:

      2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

    【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    函數(shù)知識(shí)點(diǎn)總結(jié)06-23

    函數(shù)知識(shí)點(diǎn)總結(jié)02-10

    函數(shù)知識(shí)點(diǎn)總結(jié)【熱門(mén)】08-21

    函數(shù)知識(shí)點(diǎn)03-01

    [精選]函數(shù)知識(shí)點(diǎn)03-01

    初二函數(shù)知識(shí)點(diǎn)總結(jié)01-13

    關(guān)于高中函數(shù)的知識(shí)點(diǎn)總結(jié)03-30

    初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-08

    函數(shù)知識(shí)點(diǎn)總結(jié)20篇04-20

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      日本特黄天天看特色大片 | 亚洲综合一区二区三区人妖 | 直接在线看黄AV免费观看 | 亚洲污码欧美激情h动漫在线 | 亚洲精品欧美在线综合国 | 在线看又黄又爽成年视频 |