初中數(shù)學(xué)試講教案

    時(shí)間:2024-06-24 07:31:06 數(shù)學(xué)教案 我要投稿
    • 相關(guān)推薦

    初中數(shù)學(xué)試講教案

      作為一位杰出的老師,時(shí)常需要編寫教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那要怎么寫好教案呢?下面是小編為大家整理的初中數(shù)學(xué)試講教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

    初中數(shù)學(xué)試講教案

      學(xué)情分析:

      高三(7)是我校理科重點(diǎn)班,該班的學(xué)生具有良好的數(shù)學(xué)功底,處于復(fù)習(xí)階段的他們目標(biāo)更明確,學(xué)習(xí)熱情高,課堂投入,思考積極。就本節(jié)開課的內(nèi)容而言,學(xué)生已掌握了“對(duì)稱問題”本質(zhì)屬性,能夠從圖象和表達(dá)式上準(zhǔn)確地理解對(duì)稱問題。但也只是停留在就事論事的基礎(chǔ)上,對(duì)問題的抽象、歸納概括,引申拓展還缺乏一定的能力和意識(shí)。對(duì)于周期概念,學(xué)生沒有什么的問題。

      教材分析:

      1.對(duì)稱問題是高中數(shù)學(xué)中比較難的問題,學(xué)生一般由于問題的抽象性,同時(shí)由于這中間存在關(guān)于點(diǎn)對(duì)稱和關(guān)于直線對(duì)稱這兩類問題,而它們的數(shù)學(xué)表達(dá)式又是那么相似,學(xué)生如果沒有真正理解很難分清誰是誰非。而且在高考的。問題中經(jīng)常會(huì)碰到,因此有必要加以澄清和深化理解。

      2.對(duì)稱問題和周期問題也存在一定的聯(lián)系,本節(jié)可以通過足夠的條件闡明這一聯(lián)系的實(shí)質(zhì)。

      教學(xué)目標(biāo):

      理解一個(gè)函數(shù)存在兩次對(duì)稱(可能關(guān)于兩個(gè)點(diǎn)對(duì)稱或兩條直線對(duì)稱或一個(gè)點(diǎn)加上一個(gè)對(duì)直線)時(shí),如何判斷函數(shù)具有周期性。

      重點(diǎn)和難點(diǎn):

      具有兩次對(duì)稱問題的抽象函數(shù)具有周期性,而且要求求出周期。

      教學(xué)方法:

      從簡(jiǎn)單到復(fù)雜,以啟發(fā)思想為指導(dǎo),精講重思,暴露學(xué)生的思維,使學(xué)生整節(jié)課都處于思考之中。

      教學(xué)程序:

      一、引入

      師:當(dāng)一個(gè)人站在一面鏡子前,面對(duì)鏡子一定的距離,那么在鏡中的像有什么特征?

      生:(物理常識(shí))人和像關(guān)于鏡子對(duì)稱。

      師:現(xiàn)在在此人的身后再放一面鏡子,鏡面對(duì)著人的背面,此時(shí)在此人面前的鏡子中的像又是什么?

      生:如果鏡子夠大的話,里面將是無數(shù)個(gè)排列的人。

      師:道理何在?

      生:首先是人在前面鏡中的像連同人一起要在后面鏡中成像,這一像反過來連同人又在前面鏡中成像,這樣反反復(fù)復(fù),就得到了無數(shù)個(gè)人像,而且具有周期性(即圖象重復(fù)出現(xiàn))。

      師:如果將人看成一段函數(shù),將鏡子看成一條對(duì)稱軸,那么整個(gè)函數(shù)的圖象應(yīng)該是怎樣的(圖象具有什么特征)。

      引入課題:對(duì)稱+對(duì)稱=

      二、探究

      回顧:關(guān)于圖象的對(duì)稱問題分為兩類:一類是關(guān)于點(diǎn)對(duì)稱,另一類是關(guān)于直線對(duì)稱,今天我們來研究一般的函數(shù)對(duì)稱問題,我們從函數(shù)表達(dá)式來研究,對(duì)于直線對(duì)稱:若f(x)關(guān)于x=a對(duì)稱,則有f(x)=f(2a-x)或f(a+x)=f(a-x);對(duì)于點(diǎn)對(duì)稱:f(x)關(guān)于(a,0)對(duì)稱,則有f(x)=-(2a-x)或f(a+x)=-f(a-x)。

      對(duì)于奇函數(shù)[f(x)=-f(-x)]和偶函數(shù)[f(x)=f(-x)],則是這兩類對(duì)稱中的特例。

      延伸:若是f(a+x)=f(b+x),則函數(shù)關(guān)于什么對(duì)稱(關(guān)于直線x=(a+b)/2對(duì)稱)

      提問:請(qǐng)同學(xué)們找?guī)讉(gè)關(guān)于直線x=a對(duì)稱的函數(shù)的表達(dá)式?

      生:f(4a-x)=f(6a+x)

      下面研究當(dāng)函數(shù)具有兩次對(duì)稱時(shí),結(jié)果有什么特征?

      問題設(shè)計(jì):

      ①函數(shù)f(x)

      (1)是偶函數(shù)

      (2)關(guān)于x=a對(duì)稱

      分析:由條件(2),可得f(a+x)=f(a-x),又由條件(1),所以f(x+a)=f(x-a)。

      (以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定義f(x)=f(T+x),所以f(x)是以|2a|為周期的函數(shù)

      ②函數(shù)f(x)

      (1)是奇函數(shù)

      (2)關(guān)于x=a對(duì)稱

      分析:由條件(2),可得f(x)=f(2a-x)又由條件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函數(shù)f(x)是以|4a|為周期的函數(shù),以此類推,③函數(shù)f(x)滿足

      (1)是偶函數(shù)

      (2)關(guān)于(a,0)對(duì)稱

      ④函數(shù)f(x)滿足

      (1)是奇函數(shù)

      (2)關(guān)于(a,0)對(duì)稱

      ⑤函數(shù)f(x)滿足

      (1)關(guān)于x=b對(duì)稱

      (2)關(guān)于x=a對(duì)稱

      ⑥函數(shù)f(x)滿足

      (1)關(guān)于(a,0)對(duì)稱

      (2)關(guān)于(b,0)對(duì)稱

      ⑦函數(shù)f(x)滿足

      (1)關(guān)于x=a對(duì)稱

      (2)關(guān)于(b,0)對(duì)稱

      (師生共同完成)

      三、結(jié)束。

    【初中數(shù)學(xué)試講教案】相關(guān)文章:

    小學(xué)數(shù)學(xué)試講教案09-27

    小學(xué)數(shù)學(xué)試講備課教案09-27

    高中數(shù)學(xué)試講教案09-28

    小學(xué)數(shù)學(xué)面試試講教案08-01

    高中數(shù)學(xué)試講教案模板09-28

    語文試講教案03-19

    what color is it試講教案08-30

    沁園春雪試講教案03-25

    《發(fā)展生產(chǎn)滿足消費(fèi)》初中試講教案參考03-19

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      日本乱理伦片在线观看中文字幕 | 亚洲精品在线播放 | 亚洲欧美国产老妇精品 | 真人AV片免费在线看 | 亚洲色国产电影在线观看 | 中文字幕第一区第二区 |