《解方程》的教學反思(通用20篇)
身為一名到崗不久的老師,教學是我們的工作之一,寫教學反思能總結教學過程中的很多講課技巧,那么應當如何寫教學反思呢?以下是小編幫大家整理的《解方程》的教學反思,僅供參考,大家一起來看看吧。
《解方程》的教學反思 1
本節(jié)主要教學目標是使學生通過結合具體實際問題的分析與解決,導出形如ax±b=c和ax±bx=c形式的方程,并結合原有舊知——等式的性質(zhì)推導出解法步驟,同時利用這些方程來解決一些實際問題,豐富學生的解題方法,提高學生解決問題的能力。
通過幾課時的教學與練習,學生在掌握方程解法上沒有問題,說明學生對等式的性質(zhì)掌握的比較扎實。但在運用方程解決一些實際問題時,部分學生表現(xiàn)出缺少一定的分析習慣和缺乏一定的分析能力,造成在解決問題(特別是一些例題的變式題)時產(chǎn)生較多錯誤。
通過前后練習的比較、觀察,發(fā)現(xiàn)產(chǎn)生上述問題的主要原因在于學生在練習時偏重模仿和記憶,缺少具體分析的意識。從而造成在碰到一些變式題時就明顯缺少解題策略,學生在讀題后首先想到的不是去思考題中有怎樣的數(shù)量關系,而是在記憶中極力搜索“這個問題以前有沒有講過?或跟哪個問題是一樣的?”等舊痕跡。然而這些變式題的解答難就難在它與例題有密切的聯(lián)系,但又有區(qū)別。如果學生不能找到其中的區(qū)別和練習,光靠模仿和記憶,那就很難正確解答了。因此,在教學中教師要注意學生重模仿輕分析的學習方式,在練習中要加強數(shù)量關系的分析,注重學生對解題思路的表述。教師要強調(diào)學生讀題后先分析并寫出等量關系,每個實際問題的解答過程中都要設計等量關系的分析與交流,從潛意識中使學生重視起對問題的分析與判斷。一開始學生可能在分析、判斷等量關系時還會模仿例題的形式,因此在學生對基本類型有了一定的感悟后,要有針對性的出現(xiàn)變式題讓學生來解決,使其在認知沖突中進一步感悟先分析、判斷等量關系的重要性。但同時教師也要十分清楚的認識到尋找等量關系對于課改后的`六年級學生來講,并不是一件容易的事,除了缺少一定的意識外,更重要的是缺乏一定的分析能力。
產(chǎn)生這種情況的原因主要有兩個,一是在新教材的編排中,在六年級前很少涉及甚至沒有安排過等量關系尋找的內(nèi)容。正是由于教材中忽視了這方面內(nèi)容的安排,也就引起了第二個原因——教師和學生都忽視了尋找等量關系能力的培養(yǎng)。等到六年級要大量具體涉及到時,就發(fā)現(xiàn)學生很不適應了。如何提高學生尋找題目中等量關系的能力,就成了教學的一個重點,也是一個難點。為了提高學生等量關系的分析能力,除了如前所述要加強意識培養(yǎng)外,還應在具體方法上加以指導。而用線段圖來表示題目中的條件和問題,是一種非常有效的提升學生分析、判斷等量關系的方法,教材在例題分析中就先借助了線段圖來分析,從而幫助學生找出題中的等量關系。在實際教學中我深深地體會到了畫線段圖來表示條件和問題,從而形象的表示出等量關系的有效性。同時,在教學中不能因為問題簡單或趕進度而忽視畫線段圖表示條件和問題的環(huán)節(jié)。一開始學生可能由于以前缺少一定的訓練而顯得有些不適應,但經(jīng)過幾次的努力后,學生就能很快提高作圖能力,從而有助于等量關系的尋找。
綜上所述,在列方程解決實際問題的教學中,教師首先要注意學生學習方式的培養(yǎng),從偏重模仿和記憶中逐步糾正過來,逐步建立具體分析的意識。其次是要培養(yǎng)學生用線段圖表示題目中條件和問題的能力,借助線段圖的表示形象的表現(xiàn)出相關的等量關系,提高學生尋找等量關系的能力,從而進一步提高學生列方程解決實際問題的能力。
《解方程》的教學反思 2
教學重難點是掌握較復雜方程的解法,會正確分析題目中的數(shù)量關系;教學目的是進一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學會列方程解比較容易的應用題的基礎上,教學解答稍復雜的兩步計算應用題。例1若用算術方法解,需逆思考,思維難度大,學生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應用題的優(yōu)越性。
一、從學生喜聞樂見的事物入手,降低問題的難度。
解答例1這類應用題的關鍵是找題里數(shù)量間的相等關系。為了幫助學生找準題量的等量關系。我從學生喜歡的足球入手,引出數(shù)學問題,激發(fā)學生的學習數(shù)學的'興趣,建立學生熱愛體育運動的良好情感,又為學習新知識做了很多的鋪墊。
二、放手讓學生思考、解答,選擇解題最佳方案。
讓學生當小老師,從問題中找出數(shù)量之間的關系,弄清解決問題的思路,展示講解自己的思考過程和結果,這樣既增加學生學習的信心,又培養(yǎng)學生分析問題的能力,發(fā)展學生的思維空間;然后,我大膽放手,讓學生用自己學過的方法來解答例1,最后老師讓學生把各種不同的解法板演在黑板上,讓學生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強化了列方程解題的優(yōu)越性和解題的關鍵,促進了學生邏輯思維的發(fā)展。
三、教會學生學習方法,比教會知識更重要。
應用題的教學,關鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學中,教師敢于大膽放手,讓學生觀察圖畫,了解畫面信息,白色皮多少塊,黑色皮多少塊,白色皮比黑色皮少多少等信息,組織學生小組討論交流,再在練習本上畫線段圖,然后指導學生根據(jù)線段圖,分析數(shù)量之間的關系,討論交流解決問題的方法,讓學生成為學習的主人,參與到教學的全過程中去。所以在應用題的教學中,教師要指導學生 學會分析應用題的解題方法,一句話,教會學生學習方法比教會知識更重要,讓學生真正成為學習的主體。教師是教學過程的組織者、引導者。
《解方程》的教學反思 3
本節(jié)課的內(nèi)容包括兩個方面:一是理解“等式兩邊同時加上或減去同一個數(shù),所得結果仍然是等式”,二是應用等式的性質(zhì)解只含有加法和減法運算的簡單方程。解方程是學生剛接觸的新知識,學生原有的知識儲備與生活經(jīng)驗不足,因此教學中老師要時刻關注學生的學習的情況,引導學生經(jīng)歷將現(xiàn)實生活問題加以數(shù)學化,引導學生通過操作、觀察、分析和比較,由具體的知識滲透到抽象的去理解等式的性質(zhì),并應用等式的性質(zhì)來解方程。在這節(jié)課的教學中,應讓學生理解并掌握等式的性質(zhì),這是為學生后續(xù)學習方程打下較扎實的基礎。
一、讓學生通過動手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)
老師先出示天平,并在天平兩邊各放一個20克的砝碼,“你能用式子表示出兩邊的關系?”生寫出20=20;教師在天平的一邊增加一個10克砝碼,“這時的關系怎么表示?”生寫出20+10>20,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”生交流得出在天平的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天平圖,學生觀察,教師板書,并組織學生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過全班交流,在交流中教師應逐步提示,因為這是一個全新的知識,得出等式的性質(zhì)。最后,讓學生自己寫幾個等式看一看。通過具體的操作為學生探究問題,尋找結論提供了真實的情境,富有啟發(fā)性、引領性,讓學生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并掌握了知識。
二、讓學生運用等式的性質(zhì)解方程
引入了等式的性質(zhì),其目的就是讓學生應用這一性質(zhì)去解方程,第一次學習解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質(zhì)解方程,課前布置了學生預習,課中我先讓學生嘗試練習,但巡視中發(fā)現(xiàn)學生沒有根本理解,我就利用天平所顯示的數(shù)量關系,引導學生發(fā)現(xiàn)“在方程的兩邊都減去10,使方程的左邊只剩下X”,并詳細講解解方程的書寫格式,包括檢驗。通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。然后讓學再次通過修正,試一試,鞏固解方程的知識。本節(jié)課達到了預期的效果。
三、遺憾的是,由于星期一集體活動的沖突,導致今天的上課時間30分鐘都不到,因此學生的交流顯得不充分,教師的重點講解顯得不到位
今天所教的《等式的'性質(zhì)2和解方程》是在《等式的性質(zhì)1》的基礎上進行教學的,使學生探索并理解“等式兩邊同時乘或除以同一個不等于0的數(shù),所得結果仍然是等式”,學會應用等式的性質(zhì)解只含有乘法或除法運算的簡單方程。通過對教參的學習,我認為本課應該解決好以下幾個問題:
1.例5和例3的結構基本相同,也是從天平圖表示的數(shù)量間的相等關系入手,應引導學生在觀察、分析、比較、抽象和概括等活動中,自主探索并理解等式的另一條性質(zhì)。
2.結合現(xiàn)實情境引導學生自主探索例6的解法。由于學生已經(jīng)初步掌握了解方程的一般步驟,教學過程中可以讓學生通過自主嘗試完成,再以討論的形式引導學生學會利用并理解相關條件尋找等量關系,再根據(jù)等量關系列方程。
3.應培養(yǎng)學生運用新知識解決方程的能力。通過學生嘗試,交流,教師適當?shù)脑u析,使學生明白在解方程的過程中,都應利用等式的性質(zhì)使方程的左邊只剩下x。
4.培養(yǎng)學生自覺檢驗的意識。
課中圍繞這些想法展開,效果不錯,就是有點前緊后松。
《解方程》的教學反思 4
教材的設計打破了傳統(tǒng)的教學方法,在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用關系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。
原來教學由于我個人比較偏好于傳統(tǒng)的教學方法,在教學的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學生沒能很好地理解等式的性質(zhì),所以大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來計算,只有極個別的學生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的.過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應從一個一個具體的等式抽象到未知的等式,學生容易接受,而我是直接用抽象的等式驗證的,學生不太容易接受。還有在解方程時,算理講得不太清楚,學生在解方程時,有部分學困生學起來有困難。
在今后的教學中,一定要吃透教材,認真鉆研教材,才能上出優(yōu)質(zhì)課。
《解方程》的教學反思 5
五年級上冊利用等式的性質(zhì)解方程一直困擾著老師們,因為類似a-x=b的方程,則比較麻煩,因此許多老師就避開等式的性質(zhì),轉而用四則運算各部分之間的關系進行教學,這樣以來勢必會削弱學生對等式的性質(zhì)的理解和掌握。我教學中是這樣做的:第一節(jié)課時教學學習等式的性質(zhì)和用等式的性質(zhì)解方程,在書寫上要求學生按這樣的格式書寫如:
x+100=250
解:x-100+100-100=250-100
X=150
強調(diào)我們解方程的根據(jù)是等式的性質(zhì),即把等式的兩邊同時減去100,等式左右兩邊仍然相等,通過練習使學生達到熟練程度。
第二課時教學時,引入類似a-x=b的方程,例如10.5-x=7.5這樣的方程,讓學生討論,這樣的方程我們?nèi)绾谓饽兀坑械膶W生想到了運用減法各部分之間的關系來解方程,即除數(shù)等于被除數(shù)除以商,也有一部分同學運用等式的`性質(zhì)來解方程,先將方程的左右兩邊同時加上x,,即10.5-x+x=7.5+x:方程變成了x+7.5=10.5,再把方程左右兩邊同時減去7.5,求出x的值;然后引導學生觀察在運用等式的基本性質(zhì)解方程時,方程左邊加一個數(shù)又減一這個數(shù),可以相互抵消,因此在書寫時,可以省略不寫,如:15+x=85,15+x-15=85-15,左邊可以將加15和減15省略不寫,學生很快學會了這種方法。最后引導學生把我們所學習的加減法方程的樣式及解法可以歸納如下:
x+a=b
x=b-a(根據(jù):把方程的左右兩邊同時減去a,等式仍然成立;
或者是想:一個加數(shù)=和-另一個加數(shù))
x-a=b
x=b+a(根據(jù):把方程的左右兩邊同時加a,等式仍然成立;
或者想:被減數(shù)=減數(shù)+差)
a-x=b
x=a-b(根據(jù):把方程的左右兩邊同時加x,再把方程左右兩邊同時減去b等式仍然成立;或者想:減數(shù)=被減數(shù)-差)
通過以上幾個步驟的教學,我班學生對于用等式的基本性質(zhì)解方程,或是運用加減法各部分間的關系解方程,都能運用自如,并能在后面學習了乘除法的方程后能夠自覺進行整理,概括方程的樣式和解方程的根據(jù),收到了較好的教學效果。
《解方程》的教學反思 6
學生從五年級就開始接觸簡易方程,經(jīng)歷一年多的學習對于方程有了一定的認識,然而為何要設單位“1”的量為未知數(shù)這個問題在列方程解決稍復雜的分數(shù)實際問題時就一直困擾著學生。列方程解決稍復雜的百分數(shù)實際問題是小學階段的最后一個有關方程學習的單元,因此有必要從本質(zhì)上去撥開學生心中為何要設單位“1”的量為未知數(shù)的那團云。正好借助這節(jié)課通過對比分析的方法幫助學生很好的解決這個困惑。
案例描述:蘇教版數(shù)學六年級下冊教材
教材例5:朝陽小學美術組有36人,女生人數(shù)是男生人數(shù)的80%。美術組男生、女生各多少人?
學生能很快根據(jù)題目條件進行相關的找單位“1”分析數(shù)量關系的'解題前期準備,經(jīng)歷這這兩步后學生通過已有經(jīng)驗可以很快確定用方程的策略來解決這個問題。
在教學的過程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設未知數(shù)比較合理呢?學生在底下開始異口同聲地回答設單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設美術組有男生X人,女生就有80%X人。那么根據(jù)等量關系式:男人人數(shù)+女生人數(shù)=36學生很自然地列出方程
X+80%X=36。就在大家十分“得意”的時候,一個小男孩發(fā)表了自己不同的意見:“也可以把女生人數(shù)設為X!眲傞_始很多同學覺得有點不可思議,以前做這類問題不都是將男生人數(shù)(單位“1”)設為未知數(shù)X的嗎?抓住這個千載難逢的機會,我就讓他說說他是怎么想的。他是這么說的:設女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽完他精彩的發(fā)言,大家恍然大悟,原來還可以這樣?
仔細回想這個聰明男孩的問題,原來數(shù)學真的需要動腦。這個問題在學習分數(shù)除法之前教材是一直在回避的,到了這里我靈機一動將題目改成:教材例5:朝陽小學美術組有36人,女生人數(shù)是男生人數(shù)的2倍。美術組男生、女生各多少人?那你覺得這個問題我們以前是怎么解決的?學生很自然的想到把一份數(shù)男生人數(shù)設為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設為X人呢?學生思考了一會列出:X+X÷2=36,這個方程沒有學習分數(shù)除法之前學生是沒有辦法解出來的,可能這就是教材一直回避的重要原因吧。但是學生學習了分數(shù)除法,理解了分數(shù)和百分數(shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過這兩個問題的對比,學生明白了設未知量也是很重要的。課上到這里,并不是去推翻學生已有的經(jīng)驗,而是讓學生有這樣一種意識:數(shù)學很多時候不是一種硬性規(guī)定,遇到這類問題只能設單位“1”的量為未知數(shù)。于是我順水推舟讓學生比較了這兩個方程:X+80%X=36、X+X÷80%=36哪一個解起來不較容易?學生通過計算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設未知數(shù)比較合理呢?通過這樣的對比進一步讓學生體驗到了:設男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個方程不是學生熟悉的類型,是需要學生根據(jù)除法將它轉化為aX+bX=c,這一步轉化至關重要。經(jīng)過上述的兩次對比學生終于明白了:為什么在設未知量的時候一般要把單位“1”的量設為未知數(shù)了。有了這樣的深刻的體驗,學生解決這類問題就十分自然,心中的困惑可能就會煙消云散。
《解方程》的教學反思 7
今天,上了冀教版五年級上冊《解方程》一課,我就本節(jié)課的得與失做一下反思。
一、課程分析
方程是五年級學生接觸的一種新的知識內(nèi)容,在建立了用字母表示數(shù)的已有知識基礎上,進一步學習本節(jié)課內(nèi)容,方程是數(shù)學數(shù)與代數(shù)部分的內(nèi)容,起著舉足輕重的作用。方程是學生解決數(shù)學問題一種重要工具,日后初中、高中時時刻刻離不開方程。所以,我對本單元內(nèi)容很重視,也給學生講述其重要性,重點還是要讓學生在學習、使用的過程中體會方程的優(yōu)勢。本節(jié)課是本單元的第三節(jié)內(nèi)容,在學習了等式的性質(zhì)的基礎上,解簡單的方程。因此,我制訂了以下教學目標:
1.經(jīng)歷自主探究、合作交流學習利用等式的性質(zhì)解方程的過程。
2.能根據(jù)具體情境,找到等量關系、列方程并解簡單的方程。
3.積極參與數(shù)學活動,獲得運用已有知識解決問題的成功體驗,激發(fā)解方程的'興趣。
二、教學過程
1.復習舊知導入。復習剛剛學過的等式的性質(zhì),學生舉例說明。
2.交流解疑。先對子交流、小組交流,解決預習過程中的疑問,同時整理出小組未能解決的疑難問題。
3.展示交流。學生代表1展示問題1的解決方法,學生提問、補充。這里使學生理解用方程解決問題的步驟、解方程的方法、檢驗的方法。學生代表2展示問題2的解決方法,再次理解以上問題。
4.理解新概念。觀察兩個解方程的式子,理解方程的解、解方程的概念。讓學生對比理解方程的解是結果,解方程是過程。
5.鞏固訓練、強調(diào)細節(jié)。學生自主完成試一試兩題,出錯時讓學生指正。若未出錯,強調(diào)注意寫“解”、等號對齊等細節(jié)。
三、課后反思
本節(jié)課需要改進的地方
1.學習目標的制定與出示。上課之前只給學生說了我們本節(jié)課要利用等式基本性質(zhì)來解方程,目標不具體。我們應為學生制定具體的學習目標,同時要讓學生知道。可以在給學生預習時,給學生以問題的形式出示給學生。一次本節(jié)課學習目標應為:
(1)用方程解決問題的步驟是什么?
。2)解方程的依據(jù)是什么?
(3)什么叫方程的解?什么叫解方程?
2.舊知復習時間過長。學生復習等式性質(zhì)時,舉例出現(xiàn)問題,浪費了許多時間,造成了前松后緊的局面。應該簡單復習,或讓學生在探索新知的過程中發(fā)現(xiàn)舊知,復習舊知。
3.小組合作的實效性,F(xiàn)在我班的小組合作還不扎實,或者說實效性不強。學生在討論的過程中不知道該如何合作、如何交流?梢哉f是有形無實,接下來要再次培訓組長,讓組長有組織、帶領小組同學有效合作。同時,訓練其他同學如何參與,交流什么。使小組合作更具實效性。
四、教學思考
1.教學有法,但無定法。我們在求疑嘗試的主體學習方法下,應探索出屬于自己的上課模式或者方法。我一直在想數(shù)學四大模塊應有不同的教學方法,例如圖形問題注重操作、可能性問題注重游戲體驗等。
2.全面關注學生,關注全體學生。我的班級是一個比較活躍的班級,這里的活躍其實只是課堂上七、八個積極同學的表現(xiàn),這種現(xiàn)象的背后還有更多的同學沒有參與、只是聽眾,沒有參與就沒有思考,沒有思考地學數(shù)學何來成效。所以最近一直在關注大號同學的表現(xiàn),教師關注會使他們獲得自信,獲得成功后的喜悅,學習也自然有動力。舉個我們班的例子:上《認識方程》一課時,因為較簡單,整節(jié)課我一直在關注3、4號同學的表現(xiàn),給他們更多的機會展示,結果課后我發(fā)現(xiàn)3、4號同學的作業(yè)有明顯的進步,甚至有個別4號同學比組長寫的都要好。也就是欣賞、關注的成果。
以上兩個問題有待我們一起思考,請各位領導、戰(zhàn)友多提寶貴意見!
《解方程》的教學反思 8
本節(jié)課中學生學習等式的性質(zhì)是沒有多大的難度的,在運用等式的性質(zhì)進行解方程時,難度也不是很大。課本安排了不少解方程的題目,學生都能一一解決。仔細觀察課本,其實會發(fā)現(xiàn)課本上在慢慢增加根據(jù)具體情境列出方程并解方程的題目。這是本單元的難點,這就需要讓學生根據(jù)題目中的等量關系來寫出方程。將等量關系寫出方程和學生之前根據(jù)等量關系解答是不同的。
學生不太習慣,導致列的方程奇形怪狀。這里有必要深入探究方程的含義。根據(jù)上節(jié)課的學習學生知道:方程是從等式演變而來。含有字母的等式才叫作方程。換言之,方程其實是一種含有未知量的等量關系的一種表達式。我們只需要將等量關系找到再將其表達成方程即可。學生出現(xiàn)問題的原因是以往大部分的'解題經(jīng)驗所寫出的等量關系是從結果出發(fā)來寫的,一切為結果服務這樣一種逆向的思維過程。而現(xiàn)在寫出題目中的等量關系卻是從條件出發(fā)的一種正向思維。
雖然在三年級時,我們學習了從條件出發(fā)和問題出發(fā)兩種不同的解題策略,但這離幫助學生形成這兩種思維還是遠遠不夠的。通過這樣的分析,那我們在引導孩子列方程時,就要從條件出發(fā),找等量關系來列方程了。先要幫助學生找出等量關系,在引導孩子根據(jù)等量關系表達出相應的方程。這一點的學習時必須的。
《解方程》的教學反思 9
本節(jié)課的教學重點和難點是:
理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學中我先利用演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例1,讓學生列出方程x+3=9,用演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?
學生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標是求一個x的多少,所以要把多余的3減去。在此基礎上我引導學生總結天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。 另外我還要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關系來求出方程中的未知數(shù)。在做練習時我發(fā)現(xiàn)大部分的`學生在解方程的時候,還是運用了加、減法各部分間的關系來求出方程中的未知數(shù),只有個別學生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
《解方程》的教學反思 10
本節(jié)課的內(nèi)容是在學生學習了用字母表示數(shù)、等式的性質(zhì)的基礎上進行學習的。本冊教材的解方程不僅安排了形如x+a=bx-a=bax=bx÷a=b這樣的簡單方程,還安排了形如a-x=ba÷x=b這樣的特殊方程。
成功之處:
1、淡化依據(jù)逆運算關系解方程,與初中數(shù)學相銜接。根據(jù)《標準(20xx)》的要求,從小學就引入等式的基本性質(zhì),并以此為基礎導出解方程的方法,這樣就避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強中小學數(shù)學教學的銜接。從而摒棄了原來依據(jù)逆運算解方程的.思路,能有效降低學生學習的難度,也降低了記憶的難度。實際上依據(jù)逆運算解方程就是用算術的思路求未知數(shù),只適合解一些簡單的方程,到了中學還要重新另起爐灶。因此,利用等式的性質(zhì)解方程能夠幫助學生深入的理解方程的意義,能深入理解方程所揭示的等量關系,也更有助于逐步感悟方程的實質(zhì)、等價思想和建模思想。
2、重點教學特殊方程,體會用等式性質(zhì)解方程的優(yōu)勢。在例3的教學中,先讓學生自主嘗試解方程20-x=9,大部分學生依據(jù)前面學習的內(nèi)容寫成了下面的過程:20-x=9
解:20-x+20=9+20
X=29
可是學生經(jīng)過檢驗發(fā)現(xiàn)x=29并不是方程的解,從而引導學生討論怎樣把新知識轉化為舊知識來解決問題。
不足之處:
1、在練習中由于課本這樣的練習太少,沒有增加相應的題目,學生熟練的程度還是比較欠缺。
2、學生對于歸納總結出來的特殊方程的解法還沒有內(nèi)化,導致學生出現(xiàn)解普通方程和特殊方程在解法上相混淆。
再教設計:
1、及時總結特殊方程的解法:當未知數(shù)是減數(shù)或除數(shù)時,方程兩邊要同時加上或乘未知數(shù),再解方程。
2、要弄清什么是減數(shù)和除數(shù),避免出現(xiàn)不必要的錯誤。
《解方程》的教學反思 11
解方程的內(nèi)容主要是在五年級就學過的,但六年級上期仍然出現(xiàn)了解方程的內(nèi)容,說明了這個知識點的重要性,既是重點,又是難點。在具體的解方程過程中,通過學生的課堂活動和課后作業(yè)反饋,總的說來,還是存在很大的問題。我出了12個題,全對的占少數(shù),一般要錯四個左右。下來后我進行了深刻的`反思。發(fā)現(xiàn)了幾個主要錯誤:
1、馬虎。體現(xiàn)在抄題抄錯,全班64人有6個抄錯了題。
2、較復雜點的解方程,思路混亂,不知道把哪一部分看作“整體”。
3、過于依賴計算器,對于除不盡的筆算出錯。
4、錯得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。
針對以上幾個錯誤,我認真做了分析,主要的原因有下面幾個:
1、課前過于高估學生,沒有系統(tǒng)的復習相關內(nèi)容。
2、現(xiàn)在這個班是上個五年級兩個班重新分的班,下來我問了前面教過的數(shù)學老師,兩個老師教的方法不一樣。
3、作業(yè)量不夠。
所以,在后期的教學中做了一些調(diào)整:
1、系統(tǒng)復習了相關知識。
2、多作例題講解,由易入難。
3、有針對性的出題,容易出錯的地方進行大量的練習。
4、搞了一個“我是一個小老師”的活動,全對的同學給其他同學當老師,一個對一個的教。
5、要求每個同學都獨立的出一個解方程的題,然后請一個同學完成并作評價。
經(jīng)過鍛煉,現(xiàn)在對解方程這個這知識點,同學們興趣和完成率大有提高。
《解方程》的教學反思 12
縱觀整節(jié)課教學,我認為已經(jīng)基本把握教材的重難點。在講解“方程的解”定義時,能從驗算例子答案出發(fā),讓學生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。
在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的解,讓學生明白“解方程的各種方法,目的只有一個,那就是求出解,但不同的方法有自身不同的求解過程”著重讓學生理解“求解過程”。
在這基礎上,讓學生討論發(fā)現(xiàn)兩個概念定義之間的區(qū)別。
在講授“解方程:X+7=13”例題時,我安排一個成績中等的學生上來解答(因為是新課,學生還沒有接觸過正確規(guī)范的書寫格式,學生的求解方法和過程步驟,能代表整個班級的情況。況且學生的求解過程能起到反例的作用,為下面比較教學——從對比中認識正確的求解過程做好鋪墊)
板書正確書寫格式后,讓學生通過比較發(fā)現(xiàn)該如何正確規(guī)范地求解方程的解。
整節(jié)課教學存在幾點不足:
1、學生課堂練習量少。這與定義的教學花費太多時間有關。
2、對學生新課之前的求解方程的'解的方法缺少關注。解方程是可以有很多方法的,需要鼓勵學生的多向發(fā)散思維。
3、教師課堂上雖然提到“對于一個X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關練習,因為這一內(nèi)容對理解“方程的解”有極強的意義。
《解方程》的教學反思 13
《方程的意義》這節(jié)課與學生的生活有密切聯(lián)系,通過本節(jié)課的學習,要使學生經(jīng)歷從實際問題中總結概括出數(shù)學概念的過程。讓學生初步了解方程的意義,理解方程的概念,感受方程思想。使學生經(jīng)歷從生活情境到方程概念的建立過程,培養(yǎng)學生觀察、猜想、驗證、分類、抽象、概括、應用等能力。通過自主探究,合作交流等數(shù)學活動,激發(fā)學生的興趣,所以我在教學設計的過程中十分重視學生原有的知識基礎,用直觀手法向抽象過渡,用遞進形式層層推進,讓學生經(jīng)歷一個知識形成的過程,并盡可能讓他們用語言表達描述出自己對學習過程中的理解,最后形成新的知識脈絡。下面就結合這節(jié)課,談談我在教學中的做法和看法。
一、復習導入,激趣揭題
該環(huán)節(jié)主要復習與新知識有間接聯(lián)系的舊知識,為學習新知識鋪墊搭橋,以舊引新,方程是表達實際問題數(shù)量關系的一種數(shù)學模型,是在學生熟悉了常見的數(shù)量關系,能夠用字母表示數(shù)的基礎上教學的,因此開課伊始我結合與學生有關的一些生活現(xiàn)象出示了一組題,要求學生用含有字母的式子表示出來。這些題的出現(xiàn)即能讓學生復習鞏固以前所學的知識也能讓學生體會到我們生活中有很多現(xiàn)象都能用式子表示出來,激起學生的學習興趣,引出這節(jié)課的學習內(nèi)容,這樣的開課很實際,很干脆,也很有用。
二、實踐操作,建立方程模型
1、用天平創(chuàng)設情境直觀形象,有助學生理解式子的意思
等式是一個數(shù)學概念。如果離開現(xiàn)實背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學生不會感興趣。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學生很難體會等式的具體含義。天平是計量物體質(zhì)量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的`質(zhì)量是否相等,天平圖創(chuàng)設情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學生理解式子的意思,也充分利用了教材的主題圖。
2、自主操作,提高能力,激發(fā)興趣
在探究方程的意義時我特意給學生提供操作天平平衡的不同材料,讓學生分組實踐,通過操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數(shù)的式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學生的探究欲望激發(fā)學生觀察興趣。
三、實際運用,升華提高
在練習設計中由易到難,由淺入深,使學生的思維不斷發(fā)展,使學生對于方程意義的理解更為深刻,特別使讓學生自由創(chuàng)作方程這一練習題,既讓學生應用了知識又培養(yǎng)了學生的創(chuàng)新思維。
本課時教學設計,改變了傳統(tǒng)學習方式,利用課本的靜態(tài)資源通過現(xiàn)代化教學手段,把數(shù)學情景動態(tài)化,大大激發(fā)了學生的學習興趣,充分體現(xiàn)了以學生為主,讓學生獨立思考,不斷歸納,把學生從被動地接受知識轉為自己探究,為學生提供了自主探究,合作交流的空間。在學習中體會到了學習數(shù)學的樂趣,在獲取知識的同時,情感態(tài)度,能力等方面都得到發(fā)展。當然這節(jié)課還存在一些問題,比如對等式與方程的關系突出得不夠,讀學生“說”的訓練不夠,應該給學生更多的表述的機會。
《解方程》的教學反思 14
今天對五年級上冊《解方程》進行了教學。本課主要對教學例一和例二進行了教學。
一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的'理解也很扎實。
二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學和課后的練習看,學生對解方程掌握的還不錯。
三、本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數(shù)學的樂趣和興趣!
四、通過本課的作業(yè)檢測,有少量學生還是對本課的內(nèi)容練習不是很到位。需要教師在課下不斷的指導。
五、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。
總之,“興趣是學生最好的老師”,只要緊緊抓住這一點,教學質(zhì)量的提高指日可待。
《解方程》的教學反思 15
這節(jié)課,先復習了方程的概念后,馬上讓學生說說方程需要滿足幾個條件,讓學生意識到方程是一種特殊的未知數(shù),然后出判斷題,讓學生進一步加深理解方程的意義,并讓學生明白等式和方程的區(qū)別聯(lián)系,緊接對有關方程的知識進行梳理,構建網(wǎng)絡。并解決實際問題。
本節(jié)課的教學目標是結合具體情境,了解方程的含義以及會用方程表示簡單情境中的等量關系。在教學的過程中,我設計導學案,先課件出示幾個情境圖,讓學生從生活中的蹺蹺板引入,看清情境圖。讓孩子們從中找出數(shù)學信息,從而找到等量關系,讓孩子用自己的語言進行描述,嘗試著列出方程。知道了什么是等式,接著在交流書本的三個情境圖,逐漸加大難度。多請幾位孩子說說他們找到的等量關系。嘗試列出等式。然后觀察列出交流,從而知道含有未知數(shù)的等式叫方程。做練習進行鞏固如何找等量關系,從而列出方程。本節(jié)課,我力求讓學生通過自主探索,利用生活的例子,讓每個學生都有觀察、作分析、思考的機會,提供給學生一個廣泛的,自由的活動空間,讓學生大膽嘗試,探索,感受數(shù)學的趣味。學生也都表現(xiàn)得比較積極,通過同桌交流等形式,找出等量關系,列方程時,同學們用不同的方式列出了式子,有些學生可能還受到舊知識的影響,把要求的未知數(shù)單獨放在了等式一邊,當時我雖然告訴孩子們方程不能這樣列,但從某些后進生做的練習來看要轉變過來還是有些困難,我想,可能是我沒能把書本第一個出現(xiàn)天平的.情境圖講的還不夠透徹,不能真正掌握找出等量關系的方法。整堂課當中,感覺對后進生的關注度不夠,如果多加關注,可能可以找出錯誤資源,然后教師再加以引導,讓同學們能更好的快速找出等量關系,更快的列出方程。最后,對自己比較不滿意的是,1、學生說的問題與我設想的有出入。2、學生展示的時候不大膽。流程走完了,留給學生的空間太少了。
想讓學生有個輕松愉悅的學習氛圍,但可能我還需要一些時間,希望以后能上出讓學生輕松愉悅的數(shù)學課。
《解方程》的教學反思 16
本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例1,讓學生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。
你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標是求一個x的多少,所以要把多余的`3減去。在此基礎上我引導學生總結天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。另外我還要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關系來求出方程中的未知數(shù)。
在做練習時我發(fā)現(xiàn)大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來求出方程中的未知數(shù),只有個別學生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
《解方程》的教學反思 17
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。
本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:
1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。
2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。
基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關系推導出X的值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的'原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關系教好呢,還是按等式的性質(zhì)教學好呢?
《解方程》的教學反思 18
本節(jié)課的內(nèi)容是在學生學了等式的性質(zhì)和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎上進行教學的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關鍵是啟發(fā)學生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問題轉化為已經(jīng)解決的舊的問題。在教學中,我首先讓學生試做看看遇到了什么樣的難題,部分學生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問題的過程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當學生無從下手,不知所措的情形下,啟發(fā)學生當我們遇到新問題時怎么解決呢?學生會想到聯(lián)系前面學習的舊知識來解決,那你認為應該把這樣的減法方程轉化為什么運算的方程呢?學生很容易想到把這樣的減法方程轉化為加法方程就可以解決新問題,接著教師再緊跟著啟發(fā)學生,如何根據(jù)我們學過的知識進行轉化呢?
通過學生思考、討論和交流,可以根據(jù)等式的性質(zhì)進行轉化,從而得出:20—x=9在解決特殊方程的過程中,學生有的解:20—x+x=9+x還想到利用加減法之間的關系來解決,直20=9+x接得出9+x=20也是可以的,肯定學生的9+x =20思考方法的合理性,但是也要告訴學生,9+x—9 =20—9這樣的思考方法到了中學解決更加復雜X=11的方程就無能為力了,為了使小學和中學的知識能更好的銜接,我們重點應用等式的.性質(zhì)把特殊方程轉化為一般方程,然后依據(jù)一般方程的方法解決問題。不足之處:在練習中出現(xiàn)個別學生不注意觀察方程是一般方程還是特殊方程,導致出錯。再教設計:重點強化特殊方程的特點,讓學生在解方程的過程中首先要觀察方程的特點,然后采取相應的解決問題的方法。
《解方程》的教學反思 19
這節(jié)課的內(nèi)容包括兩個方面:一是探索并理解“等式兩邊同時加上或減去同一個數(shù),所得結果仍然是等式”;二是應用等式的性質(zhì)解只含有加法和減法運算的簡便方程。解方程是學生剛接觸的新鮮知識,學生在知識經(jīng)驗的儲備上明顯不足,因此數(shù)學中老師要時刻關注學生的學習狀態(tài),引領學生經(jīng)歷將現(xiàn)實、具體的問題加以數(shù)學化,引導學生通過操作、觀察、分析和比較,由具體到抽象理解等式的性質(zhì),并應用等式的性質(zhì)解方程。在這節(jié)課的教學中,讓學生理解并掌握等式的性質(zhì)應是解決一系列問題的關鍵。
一、讓學生在操作中發(fā)現(xiàn)
課開始,老師出示天平并在兩邊各放一個50克的`砝碼,“你能用式子表示出兩邊的關系嗎?”學生寫出 50=50;老師在天平的一邊增加一個20克砝碼,“這時的關系怎么表示?”學生寫出50+20>50,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”學生交流得出在天平的另一邊增加同樣重量的砝碼;“你有什么發(fā)現(xiàn)嗎?”“自己寫幾個等式看一看!蓖ㄟ^具體的操作為學生探究問題,尋找結論提供了真實的情境,輔以啟發(fā)性、引領性的問題,讓學生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并獲得知識。
二、讓學生在發(fā)現(xiàn)中操作
引入了等式的性質(zhì),其目的就是讓學生應用這一性質(zhì)去解方程,第一次學生解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質(zhì)解方程,教者先利用天平所顯示的數(shù)量關系,引導學生發(fā)現(xiàn)“在方程的兩邊都減去100,使方程的左邊只剩下x”,通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。
《解方程》的教學反思 20
在過去教學解方程,沒有規(guī)定一定要用等式的性質(zhì)解方程,可以根據(jù)方程形式選擇利用逆運算關系求未知數(shù)。學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,這樣學生對算理的理解也容易,學生也能很快求出方程的解。根據(jù)2011版《數(shù)學課程標準》的要求,新教材要求以等式的基本性質(zhì)為基礎導出解方程的方法,不再講解利用逆運算關系求未知數(shù)。說是避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強中小學數(shù)學的銜接。由于有了前面的教學經(jīng)驗,在初次接觸新教材時總覺得只限用等式的性質(zhì)解方程比較麻煩。為了轉變自己的教學思想,更新教學觀念,我深入的研究了教材。
在教學中通過天平直觀演示天平兩邊同時放上或拿掉相同重量的東西,天平仍然保持平衡,引導學生發(fā)現(xiàn)、小結出等式的性質(zhì)。不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此性質(zhì)來解方程。通過教學發(fā)現(xiàn)小學生對以天平為直觀形象載體的等式性質(zhì),感到新奇,有趣,樂意接受,也易理解。利用天平這樣的事物原形來揭示等式的'性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形。困惑的是在教學中運用等式的性質(zhì)解方程,發(fā)現(xiàn)學生對解形如:x+a=b、x-a=bax=b、x÷a=b的方程做得很好,而且很樂意用等式的性質(zhì)來解方程,但對形如:a-x=ba÷x=b這樣的方程,在依據(jù)等式的性質(zhì)進行變形時,學生容易出錯,感到麻煩,部分學生感到困難。但是用減法和除法各部分之間的關系解答就比較簡單,所以個人感覺這種方法存在著局限性。
在計算教學中一直都倡導算法多樣化,因為要改善和加強中小學數(shù)學的銜接在這卻避開了算法多樣化。要不就把形如a-x=ba÷x=b這樣的方程放到中學再學。雖然對新教材內(nèi)容的編排有困惑,但為了讓學生更好的理解與掌握解方程的方法,我還是下了功夫研究教學方法,并在課后做了大量的輔導工作,接下來也會一邊學習新內(nèi)容,一邊復習解方程相關知識。
【《解方程》的教學反思】相關文章:
教學反思《解方程教學反思》10-24
《解方程》的教學反思06-24
解方程的教學反思05-15
解方程教學反思09-12
《解方程二》教學反思06-02
解方程二教學反思09-16
《解方程(二)》教學反思09-21
數(shù)學解方程教學反思04-05
數(shù)學解方程教學反思07-23